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Transition in the axisymmetric jet 
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The unsteady laminar flow from a point source of momentum is considered. Dimen- 
sional considerations lead to a formulation of the problem which is self-similar in time. 
Three limiting cases are examined. I n  the limit t - tm the solution corresponds to the 
classic steady solution first discovered by Landau (1 944). The limit t -+ 0 was examined 
recently by Sozou & Pickering (1977) and was shown to correspond to the flow from an 
unsteady dipole of linearly increasing strength. More recently Sozou (1  979) determined 
an analytic solution for the creeping flow limit Re+ 0. I n  the present work, unsteady 
particle trajectories for each of these cases are examined by reducing the particle path 
equations to an autonomous system with the Reynolds number as a parameter. 
Transition of the jet is examined as a bifurcation of this system. In the case of the 
creeping-flow solution, the particle-path pattern exhibits a structure which is not 
easily discerned in any of the other variables which govern the flow. For sufficiently 
small Reynolds number the particle paths converge to a single stable node which lies 
on the axis of the jet. At a Reynolds number of 6.7806 the pattern bifurcates to a saddle 
lying on the axis of the jet plus two stable nodes lying symmetrically to either side of 
the axis. At a Reynolds number of 10.09089 the pattern bifurcates a second time to 
form a saddle and two stable foci. 

1. Introduction 
Transition in fluid flow may occur in a variety of ways but in general two basic types 

may be distinguished. The first, and by far the most common type, is transition to 
turbulence. The classic and technologically most important case is that of the flat-plate 
boundary layer investigated by Schubauer & Skramstad (1947). Here, as in other 
cases where transition leads to turbulence, the streamwise increase of Reynolds 
number leads to a succession of instabilities, first linear, then nonlinear, which give 
rise to a motion which is ultimately chaotic; the flow, which is initially stable and 
steady, becomes unstable and unsteady as the Reynolds number is increased. 

The second type of transition is one where, by variation of the Reynolds number, 
a flow which is steady and stable is replaced abruptly by a new flow which is also steady 
and stable. The classic case here is that of circular Couette flow. This was studied by 
Taylor (1923) and more recently by Coles (1965), who documented a very complex set 
of stages through which the laminar flow may pass before becoming turbulent. This 
type of transition has been the subject of renewed interest in recent years (Fenster- 
macher, Swinney & Golub 1979; Benjamin 1978) partly for its own sake, and partly 
because it is felt that an increased understanding of transition of the second type will 
lead to an increased understanding of transition to turbulence. 

I n  the present work we consider the flow produced by an axisymmetric jet emanating 
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from a point source of momentum with strength J / p .  As the Reynolds number, 
[J /p]+/v ,  is increased the flow pattern of the jet undergoes a sequence of regular 
changes, each of which occurs a t  a specific critical value of the Reynolds number. I n  
this sense, transition in the jet is reminiscent of transition in couette flow. 

The impulsively started axisymmetric jet has been treated numerically on two 
previous occasions. Ma & Ong (1971) formulated the self-similar problem in cylindrical 
co-ordinates (r/(vt)g,  z/(vt)&, 8) and carried out a finite difference calculation with the 
primary aim of computing the propagation of the jet front into stagnant fluid. Sozou & 
Pickering (1977) computed the same flow in spherical self-similar co-ordinates 
( ( v t ) i / ~ , 8 ) .  They noted that for large time, the solution corresponds to the classic 
steady solution due to Landau (1944) and Squire (195 1). Whereas, for small time, the 
solution corresponds to the flow from an unsteady dipole. They noted further that the 
streamlines of the developing flow form closed loops about a stagnation point which 
propagates to infinity along a straight line emanating from the origin. Sozou & 
Pickering carried out their computations for jet Reynolds numbers in the range 
2.15 6 [ J / p ] * / v  < 12.5. At the lower end of this range the streamline pattern of the 
jet is nearly symmetrical about the equatorial plane cos 8 = 0 and the stagnation point 
propagates along a line which is nearly 90' away from the direction of the applied 
force. As the Reynolds number is increased, the streamline pattern develops an 
asymmetry about the equatorial plane so that a t  Re = 12.5 the stagnation point 
propagates along a line which is about 50" away from the direction of the applied force. 
More recently, Sozou ( 1979) re-examined the low-Reynolds-number case and found 
an analytic solution for the creeping unsteady jet which is uniformly valid for all time. 

The stability of the steady axisymmetric jet was analysed by Batchelor & Gill (1962). 
They examined the inviscid stability of the velocity profile corresponding to  the high- 
Reynolds-number limit of the Landau-Squire solution. Using the usual approxima- 
tions of parallel flow and infinitesimal disturbances, they found that in the case of a jet 
with a ' far-downstream' profile only a sinuous helical mode, with axial wavelength 
several times the jet diameter, can yield amplified disturbances in an  inviscid fluid. 
Their analysis did not yield a value for the critical Reynolds number of the jet. 

Observations of a small diameter jet of water into water were made by Viilu (1962) 
using an acid base reaction and a phenolphthalein indicator for flow visualization. 
Viilu observed that the jet became unstable a t  a Reynolds number between 13.1 and 
14-75) where the Reynolds number is based on the momentum flux of the jet assuming 
a parabolic velocity profile a t  the nozzle exit.? By examining a range of nozzle 
diameters, Viilu found that the Reynolds number for instability remained roughly 
constant independent of the diameter of the nozzle. At about the same time, Reynolds 
(1962) made observations of a jet of dyed water directed into a large tank of water. He 
observed a variety of modes of instability. At low Reynolds numbers (10 < Re < 30) 
he observed break-up similar to that observed by Viilu. However, as the flow rate was 
increased, Reynolds noticed that the rapid breakdown a t  low Reynolds numbers gave 
way to a progressively longer simple jet which could be maintained up to Reynolds 
numbers in the range 150 < Re < 300. 

t Viilu reports that stable-unstable transition occurs between a Reynolds number of 10.5 and 
11.8 based on the nozzle diameter and the mean velocity obtained from volume flow measure- 
ments. He observes that the exit profile must have bcen close to that of Poiseuille flow, although 
this was apparently not, measured.' 
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I n  an attempt to explain some of these observations, the analysis of Batchelor & 
Gill was extended by Gill (1962) to  the case where the fluid was slightly viscous and the 
disturbances were small but finite. He showed that axisymmetric disturbances do not 
grow in a slightly viscous fluid and suggested that the growth of small but finite 
disturbances is responsible for the ' condensations ' observed experimentally by 
Reynolds. I n  the present paper we will study transition of the axisymmetric jet from 
a rather different point of view. We will examine the unsteady self-similar flow from 
a starting jet in the creeping flow limit Re -+ 0. This limiting solution, which is perfectly 
symmetric about the equatorial plane cos 6' = 0,  is shown to have a remarkably com- 
plex structure when analysed in terms of non-steady particle paths. The main features 
of the analysis are: 

(i) There is no assumption that the flow is parallel or that  it is subjected to  small 
disturbances. The method of analysis, though straightforward, is quite new and lies 
outside the usual small disturbance theory used to determine the stability of various 
velocity profile shapes. 

(ii) The analysis yields not one but two critical Reynolds numbers for the jet. 
(iii) The main results of the present paper are derived from an examination of the 

creeping-flow solution at  Reynolds numbers which lie outside of its region of validity. 
Nevertheless, the method of approach is essentially nonlinear and can be used to 
investigate the structure of numerical solutions based on the full equations of motion. 

(iv) The flow pattern produced by plotting particle trajectories in similarity co- 
ordinates is the same for all moving observers who translate (non-uniformly) along 
a radius a t  a velocity equal to some constant times t-4. As a consequence, structural 
features of the flow are brought out in a simple and invariant way without reference 
to  an observer who might translate with any particular feature. This is in contrast to 
the pattern of streamlines in physical or similarity co-ordinates which changes when 
referenced to a moving observer. 

2. Statement of the problem 
Consider the incompressible flow from a point source of momentum which starts 

a t  time t = 0 and thereafter exerts a force per unit mass on the fluid which is equal to 
J / p  (units length4/time2). The governing equations in spherical polar co-ordinates are 

(v sin 0) = 0 
i a  i a  
- - ( r2u)+ -- 
r ar sin 0 a0 

(continuity), 

a(rv) au 
ar ae rw = --- (vorticity), 

ar ao (w sin 8)  ) +- 5 ( rw)  ] (momentum). (3) at +-( ruw)+-(vw) = v -- -- (: :o (si:o:o 
a a(rw) a 

The Stokes stream function is used to integrate the continuity equation as 
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t l  t 2  t3  

FIGURE 1. Schematic diagram of the unsteady propagation of a started jet. 

We will be concerned with the equations for unsteady particle paths given by 

where the velocity components, u and v, are in the radial and tangential directions, 
respectively. 

Dimensional considerations lead to the conclusion that the boundary of the region 
of disturbed rotational flow (shown schematically in figure 1) must propagate in a 
geometrically similar way and that any length scale of the jet must vary as t*. This 
leads to similarity variables 

5 = r/(vt)&, 8; Y = &qg, e), (6) 

where v is the kinematic viscosity, Y is the Stokes stream function, and r and 8 are the 
radius and polar angle in spherical co-ordinates. 

Upon substitution of (6) the system (1)-(5) becomes 

i a  i a  
5 sin e ae (7) 

(vorticity), ( 8 )  

- - (E2 77) + - - ( V sin e)  = o (continuity), 

1 a aU 
= t W(‘5 4, EW(E, 0) = - (EV) -x a t  

The reduced velocities U and V are given by 

and the particle path equations ( 5 )  become 

where r = In t .  The Reynolds number of the jet is 

Re = [J /p]* /v .  (12) 

In  the following sections we shall consider several solutions to the system (7)-( 10). 
The first will be the classic steady solution due to Landau which, when recast in 
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unsteady self-similar co-ordinates, forms the boundary condition for the started jet in 
the limit E -+ 0 ( t  + 00). The second will be the irrotational flow due to a dipole of 
linearly increasing strength. This forms the boundary condition for the started jet in 
the limit E -+ 00 (t -+ 0). An important feature of the problem is that, although the 
reduced system (7)-( 10) does not contain the Reynolds number explicitly, the boundary 
conditions at [ -+ 0 and 5 -+ 00 do depend on Re. A related feature, which is a conse- 
quence of the dimensions of J /p  and v, is the fact that the Reynolds number does not 
vary in space. This is in contrast to the boundary layer on a flat plate or, for that 
matter, the laminar plane jet. This is the key feature of the problem which admits 
transition which does not necessarily lead to turbulence. 

First, particle paths for both the Landau-Squire solution and the unsteady dipole 
are examined using (1 1). Then the solution for the limit Re + 0 is examined. In  each 
case the Reynolds number appears in the system (11) as a parameter and the 
possibility of bifurcation follows. 

Transition in the axisymmetric jet differs from transition in Couette flow in that, 
whereas Couette flow involves a bounded steady flow which bifurcates to anew steady 
flow, the jet involves an unbounded, unsteady, self-similar flow which bifurcates to a 
new unsteady self-similar flow. 

3. Particle paths - invariance 

on critical points (to, Oo), where 
Much of the analysis which follows will focus on various isocline patterns of (1 1) and 

and 

There are several useful aspects of this approach. Structural features of the flow, which 
are implicitly contained in a pattern of streamlines are explicitly displayed in a pattern 
of particle trajectories. Moreover, the pattern of particle trajectories is invariant. To 
see this it is convenient to consider a general unsteady three-dimensional flow with 
length scales which grow like (ut)+. The particle-path equations in Cartesian co- 
ordinates (displacement; x i ,  velocity; ui and vorticity; wi, i = 1,2,3)  are 

ax, 
- = ui. at 

Consider a transformation, in Cartesian co-ordinates, to an observer who moves (non- 
uniformly) outward along a radius with 

. xi = xi-ai(vt)), t' = t ,  ui = ui-&ai(v/t)4, w; = wi. (15) 

In the case of the jet, any structural feature moves along a line 8 = constant and the 
values of the a, might be chosen so as to follow a particular feature. In  terms of 
similarity variables (gi = u-4t-*xi, U, = v-4t*uzc,, Wi = twi) the particle-path equations 
(14) become 

d t i  - = U, - ?&, 
a7 
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FIGURE 2. Fixed control volume for a momentum balance at 6 = 0. 

where 7 = In t. The transformation (15) becomes a simple translation when cast in 
terms of similarity variables 

6; = Ei - ai, Ui = Ui - &ai, Wi = Wi. (17 )  

The adjustment of ui by &ai(v/t)4 (or Ui by &ai) is the property of (15) which causes the 
velocity vector field to be different for different observers. This is true whether one 
plots the vector field, ui, in physical co-ordinates or the vector field, U,, in similarity 
co-ordinates. I n  contrast, if we examine the particle path equations (16) we find 
Ui - 46; = U, - +ai - 8(Ei - ai) = U, - &ti. All observers, moving or not, would assign 
the same numerical values to the components (d&; i = 1 , 2 , 3 )  of the particle displace- 
ment vectors in similarity co-ordinates. A moving observer wouldassign these values a t  
points which are uniformly displaced by a fixed amount c = (a; + a: + a:)* along a ray 
8 = constant, but this displacement wouldnot affect the pattern of particle trajectories. 
The implication of this is that the location and character of a critical point in similarity 
co-ordinates is fixed by the dynamics which govern the flow and not by the incidental 
choice of speed (which may be zero) for a moving observer. Additional discussion of 
this invariance, for a flow with length scales which grow like t ,  may be found in 
Cantwell, Coles & Dimotakis (1978) where particle trajectories were used to identify 
critical points in the flow pattern of a turbulent spot. 

4. The limit g + O  ( t - t c o )  

Landau (1944) and, independently, Squire (1951), solved the steady problem of a jet 
emerging from a point source of momentum which was assumed to have been turned 
on for all time. The Stokes stream function for this case is 

2 sin2 8 
yp = vr ( A  - cos6J) * 

The constant A is related to the Reynolds number by considering an integral 
momentum balance over a sphere of fixed radius R (see figure 2). 

J - =/on(2L(u~os8--l)sinB)- P 2nR2sinBd8. (19) 

P P P 

The stresses 7Jp and rrO/p are related to the velocity field by the usual Newtonian 
relations 
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The pressure is related to the velocity field by the r and 6 components of the momentum 
equation. I n  short, all the terms in (19) can be represented explicitly in terms of r ,  6 
and A, through repeated use of (18). When the integral is carried out the result is 

Note that as Re + 0; A -+ 00 and as Re -+ co; A -+ 1 .  

by simply multiplying and dividing by (vt),. We shall take 
The solution (18) is a perfectly steady flow. However, we can put it in the form (6) 

as the solution of the impulsively started jet for small 6. Substitution of (22) into 
(7)-(10) confirms that (22) is a solution of the governing equations. 

5. The limit [ + 0 0  (t+O) 
I n  the previous section we examined Landau's solution for the steady jet as an 

unsteady self-similar solution to the system (7)-( 10). This solution conserves the flux 
of momentum from the source at  ( = 0 and, a t  first sight, there would seem to be no 
reason to go any further. However, we wish to consider a jet which has been turned on 
for a finite time and therefore has produced a flow field which contains a finite amount 
of momentum. The solution (22) violates this requirement. The basic requirements a t  
E + co are that the solution be irrotational and that it conserve momentum. Sozou & 
Pickering (1977) showed that, at  a fixed radius, the solution for small time corre- 
sponds to the flow from an unsteady dipole. The Stokes stream function for this case is 

(23) 
@ = --(Bsin26). v2t 

We can put (23) in the form (6) by multiplying and dividing by (vt)*. We shall take 

as the solution of the impulsively started jet for large 6. 
The dipole (24) is irrotational and thus automatically satisfies (7)-( 10). The constant 

B may be related to the Reynolds number by considering a balance of forces which act 
on and inside a sphere of radius R = <,(vt)*, where Ec $ Ret/nt and c, 9 1. This 
condition on tC ensures that, after a time t ,  the radius R is large compared to either 
an inertial or a viscous propagation distance. The sphere is an expanding control 
volume which is located a t  E = 5, = constant in similarity co-ordinates (see 
figure 3). The integral momentum balance is 

J = g l n s R  (u cos 6 - ZI sin 6 )  2nr2 sin 6drd6+ fl cos 8 2nR2sin 8 d 8  
P d t o  0 s o  P 

+Ion (s - u)(u GOS 6 - sin 6) 2nB2 sin 6d6 

''' cos 0 - 3 sin 6 
P 
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FIGURE 3. Expanding control volume for a momentum balance at 6 = co. 

The first integral above represents the rate of change of total momentum inside the 
sphere. The third integral is the flux of momentum into the sphere due to the outward 
movement of the boundary into the fluid. The second and fourth integrals are forces 
due to pressure and viscosity integrated over the surface of the sphere. 

Each of the integrals in (25) is evaluated with u, v, T,,, rTe and P determined using 
g&, 8). When the Iimit Q -+ co is taken, the third and fourth integrals are zero. The 
second integral is 

(26) Jon p cos 82nR2 sin e d e  = g n V 2 ~ .  

The first integral in (25) requires some care. It involves integrating the solution, 
which we do not yet know, over the interior of the expanding control volume. Using (4) 
and (6) we have 

1 Jo'/~[$(gcosO)+-([gsinO) a 2ndEdO. 
% 

( ~ ~ 0 ~ O - ~ s i n 8 ) 2 n r 2 s i n B d r d O  = v2 

(27 )  
Taking the limit .& -+ 00 and making use of the known expressions for g at 5 -+ 0 and 
E --f 00, plus the fact that g(& 0) = g(E, n) = 0, we have 

Combining (26) and (28 )  
J Re2 B = - = -  

4npv2 4n ' (29 )  

in agreement with Sozou & Pickering (1977).  
The flow at 00 is that due to a dipole of strength J t / p .  This is also the total impulse 

applied to the fluid since the initiation of the source. Two-thirds of this impulse is 
contained in the directed motion of the fluid (28 ) .  One third is lost to opposing, un- 
steady pressure forces which act a t  m (26). 
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6. The limit Re -+ 0 

If one takes the limit of (21) as A -+ co (Re --f 0) the result is 

16n A = -  
Re2 ' 

In this limit the solution near E = 0 becomes symmetric in 0 and one may expect an 
overall solution of the form 

lim g(5,0) = €sin20 P([), 
Re+O 

where 
Re2 
16n' 

E = -  

and 
limp([) = 25; 
6-.0 6+w 

limP(5) = 4/6. ( 3 3 )  

Substituting (31) into ( 8 ) ,  (9) and (10) and neglecting terms of order €2, leads to a 
linear ordinary differential equation for P(5).  The solution (Sozou 1979) is 

7. Particle paths - bifurcation 
At this point, having dispensed with the system (7)-( lo), we will attend to (1  1) as a 

nonlinear autonomous set of ordinary differential equations with the Reynolds number 
as a parameter. For a thorough discussion of bifurcations of nonlinear dynamic 
systems, see Andronov, Leontovich, Gordon t Maier (1977). 

In  the neighbourhood of a critical point (c,, 8,) equations (1 1) may be expanded as 
(Perry nt Fairlie, 1974) 

d W 7  = 4 5  - t o )  + b(0 - 00), 

d8/d7 = C(5-50)+d(6-eo). 
( 3 5 )  

The character of the critical point is completely determined by the negative of the 
tracer, = - (a + d )  and determinant q = ad - bc of the matrix of coefficients. Use of the 
continuity equation (7), vorticity equation ( 8 ) ,  and the rate of strain tensor lead to a 
relationship between the character of a critical point and the strain and vorticity in its 
neighbourhood. From continuity 

From the definitions of vorticity and the rate of strain tensor 
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FIGURE 4. Particle trajectories for go(<, 8 )  with A = 3.0. 

Using (36)) (37) and (38) 

( L?-S2+4 (0 ,+0)  
q =  

\Q2-S2+++&d (0, = 0)) 
(39) 

where SZ = +W(<,, 0,) and S = ( -det (Sii(c0, 0,)))t .  

functions go(t;, 0)) qm(& 0) and G(& 0) repeated below, 
Now consider the particle trajectories and critical points associated with the three 

First let us examine the flow pattern of g,,(E, 8). Using the definitions (lo), substitute 
(40) into (1 1) .  The result is 

(43) 
d< 2 (A2-1)  -1)- 5 .  e-  2 sin 8 

= 5 ((A - cos 1 9 ) ~  2 )  dr -gA-cose)* 

The system (43) has a single stable node with p = $ and q = &, located at  

(50) 0,) = (21/(2/(A - 1)))  0). 

The particle path pattern of (43) with A = 3.0 is shown in figure 4. Each of figures 4 ,5 ,  
7 and 8 shows particle trajectories in the upper half of the x /J (v t ) ,  y/J(v t )  plane. 

Now examine the flow pattern of gm(<, 8). Using the definitions (10)) substitute (41) 
into ( I  1). The result is 

(44) 
d$ Re2coa8 c .  d0 Re2sin8 -- --- 
d r  2n t3 2 '  d r  4 7 ~  t4 ' 
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FIGURE 5 .  Particle trajectories for g,([, 0) with R = 4-375 ( A  = 3.0). 

Thesystem(44) hasasaddlewithp = i andg  = -+,locatedat (to, 0,) = [(Re*)/(d) ,  01. 
The particle path pattern of (44) with Re = 4.375 ( A  = 3.0) is shown in figure 5. 

Figures 4 and 5 provide a useful insight into the structure of the functions go(E, 0) 
and g,(t, 0). While a small area in each figure (near ,$- = 0 in figure 4 and at  large 5 in 
figure 5 )  closely approximates the flow from a started jet, the figures are not intended 
to represent an expansion of g(f; ,0)  in powers of 5. They are presented solely as a 
method of exploring the structure of the flow fields represented by the functions go 
(Landau-Squire) and g, (unsteady dipole). 

Consideration of the critical points of the particle path pattern can lead to useful 
insights into the Reynolds number dependence of the flow. In this context it should be 
noted that while the to coordinates of the critical points of both go and g, increase with 
Re, the values ofp and q at the respective points are independent of Re. Thus the stable 
node of the Landau-Squire jet remains a stable node for all Reynolds numbers and 
the saddle of the unsteady dipole remains a saddle at all Reynolds numbers. 

Neither of these flows is subject to transition as we shall define it shortly. This is 
consistent with the conclusions of Batchelor & Gill regarding the stability of the high- 
Reynolds-number limit of the Landau-Squire profile. What is important here is that, 
in a jet emanating from a constant source of momentum which is started at some 
initial time (and one may argue pro or con regarding the physical realizability of a uni- 
formly steady jet), the flow at intermediate values of t must accommodate both the 
steady Landau-Squire behaviour at t = 0 and the unsteady dipole behaviour at t = 00. 
If one accepts that the on-axis critical point moves to larger and larger values of 5, as 
the Reynolds number is increased, then this would suggest that the stable node which 
would pertain at  small Reynolds number (small to) cannot remain a stable node when 
the Reynolds number (and thus to) becomes large. Here the invariance of the particle 
trajectory pattern plays an important role, for it ensures that the type and character 
of a critical point is uniquely determined. Thus the node of the Landau-Squire jet 
cannot be changed to a saddle and, similarly, the saddle of the unsteady dipole cannot 
be changed to a node by merely referring the flow to a new observer. Stated another 
way, bifurcations produced by variation of the Reynolds number couldnot be simulated 
or removed by changing frames of reference. 

P L M  104 13 
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FIGURE 6. Zeros of the particle path equations for the low-Reynolds-number solution ((45) and 
(46)). Dashed line is the circle 6, = 1.7633. Solid lines are curves of (47) for various Reynolds 
numbers. Open circles are locations of critical points. 

Let us now consider particle paths of the creeping flow solution (39). Upon sub- 
stitution of (39) into (1  1) we have 

Zeros of the right-hand side of (46) occur at (8, = 0 and n-, all [) and (go = 1.7633, all 8). 
Setting the right-hand side of (45) equal to 0 gives 

Equation (47) defines a family of curves in the (go ,  8,) plane of which several are drawn 
in figure 6. Superimposed on this family are the zeros of (45), i.e. the circle go = 1.7633 
and the horizontal axis, 6, = 0. Intersections in this figure locate the critical points of 
the system (45) and (46). 

If Re < 6.7806 there is a single node lying on the axis of the jet (8, = 0). In  this 
Reynolds number range, equation (47) provides a relation between Re and to, the 
radial co-ordinate of the node which moves outward along the axis of the jet as Re is 
increased. 

When Re exceeds 6.7806, the flow splits into three critical points; a saddle situated 
on the axis of the jet and two stable nodes located symmetrically about the axis at 
to = 1-7633 and 

B0 = f. c0s-l [(6*7806/Re)2]. (48) 

As the Reynolds number is further increased, the nodes move away from the axis on 
the circle go = 1-7633. At the same time the to coordinate of the saddle continues to 
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FIGURE 7.  Particle trajectories for G(6 ,  0) at, several Reynolds numbers 
(a) Re = 2.0, ( b )  Re = 8.0,  (c) Re = 20.0. 

13-2 
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FIGURE 8. Particle trajectories for G(& 0)  at Re = 8 with increased 
resolution near the off-axis critical point. 

follow (47) with 8, = 0. For the critical point on the axis, the invariants of the matrix of 
coefficients are 

qo,=o = (Poo=, - 3) (8 - 21)0,=0). (50) 

For the critical point off the axis, the invariants are (5, evaluated as 1-7633) 

Pe,+o = $2 

qo,+o = 6.8143 x 10-5Re4- 0.14405. 

The off-axis node changes to a stable focus when qo,+o exceeds a. This occurs at  
Re = 10.09089. Figures 7 and 8 depict the particle path pattern of (45) and (46) at 
Reynolds numbers in the three regimes of interest. The various patterns and their 
relation to the boundary conditions at 5 = 0 and E = 03 are summarized schematically 
in figure 9 which shows the trajectory of the critical points of the creeping-flow solution 
in the ( p ,  q )  plane. 

8. Discussion 
It is interesting to contrast the complexity of figure 7 with the simplicity of some of 

the other variables which govern the flow. The reduced stream function (42) is sym- 
metric in 8 and simply scales with Re2. Similarly, the -vorticity 

Re2 1 1  W(g, 8) = __ sin 8 - + - e-fcz - 
477 (S2 EJn 

(53) 

is also symmetric and scales with Re2. A plot of 4n W/Re2 sin 8 in figure 10 reveals simply 
a rapidly decaying exponential. The point is that neither the vorticity nor the stream 
function show any special structure as the Reynolds number is increased. Whereas 
the behaviour of the fluid itself changes drastically. For example, the roll-up of particle 
trajectories depicted in figure 7 (c) occurs entirely without any local concentration of 
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vorticity. The relevant quantity here is not the vorticity alone, but the combination of 
vorticity and strain given by (39). Moreover, the special values of Re a t  which changes 
in the flow pattern occur, come strictly from the analysis of particle paths. The source 
of asymmetry in the particle path pattern lies in the fact that the flow is directed 
outward along the positive x axis. It is this simple feature which leads to the possibility 
of critical points to the right of the origin but not to the left. 

Many questions remain. The results of figure 7 lie outside the range of validity of the 
solution (34). Although it is probably fair to assume that the fully nonlinear solution 
would exhibit qualitatively similar behaviour, it is equally fair to expect significant 
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quantitative differences when the nonlinear terms are included. The sequence of events 
(node followed by saddle plus node, followed by saddle plus focus) is likely to be 
preserved, but the critical Reynolds numbers will be different from the values obtained 
from (45) and (46). That the sequence is preserved is virtually assured by the positions 
of the critical points of the bounding solutions in the (p ,  q )  plane show in figure 9. To 
see this, consider the limiting values of p and q for the on-axis critical point of the 
creeping flow solution. 

Equation (47) is used to remove Re2 from (49) and (50). After taking limits of (49) 
and (50), we have for the creeping-flow solution 

lim (P, P) = (2, a,, 
lim ( p , q )  = (2, -4)  
to+, 

50+a 

Thus a t  low Reynolds numbers (small to), p and q approach the values for the 
Landau-Squire solution and at high Reynolds numbers (large to), p and q approach 
the values for the unsteady dipole. This is a consequence of the fact that the 6, 
co-ordinate of the on-axis critical point increases monotonically with Reynolds 
number . 

In  the case of the on-axis critical point of the nonlinear solution, the zero Reynolds- 
number limit of course remains the same. The high-Reynolds-number limit is open to 
question. However, if one assumes that the radial coordinate, go, of the on-axis 
critical point increases with Reynolds number, then it is not unreasonable to assume 
that the nonlinear solution will also follow a trajectory in the ( p ,  q )  plane (figure 9) 
which takes it from (p ,  q )  = (a, 2) to ( p ,  q )  = (z ,  - 4) as the Reynolds number increases 
from zero to infinity. Continuity requires that the trajectory intersect the horizontal 
axis at the intermediate point ( p ,  q)  = ($, 0) and that the off-axis critical point move 
along the vertical line p = #. Thus, unless the nonlinear solution follows some very 
pathological trajectory in the ( p ,  q )  plane, the sequence node followed by saddle plus 
node followed by saddle plus focus, is likely to be preserved. 

Some evidence that the nonlinear solution bifurcates can be found in the numerical 
results of Sozou & Pickering (1977). Their figures 1 ,  2 and 3 of instantaneous stream- 
lines at  Re = 2.15,5.90 and 12.5, respectively, contain sufficient quantitative informa- 
tion ( ( b )  and (e) of each figure) to look for off-axis critical points. In  each figure, rays 
drawn through the origin tangent to the streamlines define a nearly semicircular curve 
of tangent points along which V ( t ,  8) = 0. Differentiation of the stream function with 
respect to 8 along this curve leads to a rough estimate of the angle at which U(<, 8) - 65 
equals zero. At Re = 2.15 an off-axis critical point is not found. At Re = 5.90, a critical 
point of the nonlinear solution lies a t  (go ,  0,) = (2-0 f 0.1, 11 f 1"). 

Note that the creeping flow solution does not bifurcate until Re exceeds 6.7806. At 
Re = 12.5, a critical point lies a t  approximately (to, 0,) 2 (2.5 f 0.1,34 1') compared 
to (c0,8,) = (1.7633, 72.89") for the creeping flow solution. Given the form of the 
particle trajectories a t  very low Reynolds numbers shown in figure 7 (a ) ,  plus the lack 
of an off-axis critical point at Re = 2.15, one may therefore conclude that the non- 
linear solution must bifurcate a t  least once at a critical Reynolds number between 
2.15 and 5.90. 

Experimental observations of jet transition are somewhat less certain. While the 
observations of transition a t  low Reynolds numbers by Viilu and Reynolds are 
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encouraging, neither experiment can be considered definitive. The fact is that any 
attempt to search for the critical points described in this paper would encounter 
considerable experimental difficulties. Most jets are created by the momentum flux 
associated with flow leaving a tube. The exit flow may have a parabolic or top hat 
profile or something in between. In any case, the initial development to a jet profile 
will take several jet diameters. If we consider a parabolic profile, as in the experiments 
of Viilu, then 

v (53) 

where U is the mean tube exit velocity, and D is the tube diameter. The Reynolds 
number, based on x, of the free shear layer downstream of the tube exit is 

The Reynolds number of the jet and the Reynolds number of the shear layer are 
inextricably connected, with the Reynolds number at the end of the initial mixing 
zone ( x / D  2 6) several times the jet Reynolds number. The implication of this is that 
bifurcation of the developing jet is almost certain to be obscured by transition in the 
initial free shear layer. 

Moreover, the constraint imposed by the dipole boundary condition at  infinity is 
crucial to the transition process. Thus it may be important that the jet be produced by 
a force with a velocity perturbation at  infinity proportional to l / r 2  and not by a source 
with a velocity perturbation which dies off like l / r .  The injection of mass, no matter 
how small, will dominate the dipole behaviour at infinity, possibly changing the 
transition process in an essential way. 

9. Concluding remarks 
The main theme of this paper is the use of particle trajectories to reveal structural 

features associated with the Reynolds-number dependence of an axisymmetric jet. 
The analysis has led to several useful results. Transition in the unbounded jet is in the 
nature of transition in couette flow and occurs a t  specific critical values of the Reynolds 
number rather than in some range over which small disturbances are amplified. 
Moreover, the critical Reynolds numbers are small. Quite surprising is the com- 
plexity of the creeping flow solution which at first sight would appear to exhibit only 
a trivial dependence on Reynolds number. 

The technique applied here is applicable to a rather general class of unsteady, self- 
similar flows (Cantwell 1979), both two-dimensional and three-dimensional. The way 
appears open to a rich variety of possible flow patterns and to an improved under- 
standing of the manner in which increasing Reynolds number leads to increasing 
complexity of flow. 

I would like to express thanks to Professor Milton Van Dyke for many helpful 
discussions. This work was supported by NASA Ames Research Center under grant 
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